Y.: SimpleMKL

نویسندگان

  • Alain Rakotomamonjy
  • Francis Bach
  • Stéphane Canu
  • Yves Grandvalet
چکیده

Multiple kernel learning aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning (MKL) algorithm, based on semi-infinite linear progamming, has been recently proposed. This approach has opened new perspectives since it makes the MKL approach tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs numerous iterations for converging towards a reasonable solution. In this paper, we address the MKL problem through an adaptive 2-norm regularization formulation that encourages sparse kernel combinations. Apart from learning the combination, we solve a standard SVM optimization problem, where the kernel is defined as a linear combination of multiple kernels. We propose an algorithm, named SimpleMKL, for solving this MKL problem and provide a new insight on MKL algorithms based on mixed-norm regularization by showing that the two approaches are equivalent. Furthermore, we show how SimpleMKL can be applied beyond binary classification, for problems like regression, clustering (one-class classification) or multiclass classification. Experimental results show that the proposed algorithm converges rapidly and that its efficiency compares favorably to other MKL algorithms. Finally, we illustrate the usefulness of MKL for some regressors based on wavelet kernels and on some model selection problems related to multiclass classification problems. A SimpleMKL Toolbox is available at http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html 1 ha l-0 02 18 33 8, v er si on 1 26 J an 2 00 8

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using SVDD in SimpleMKL for 3D-Shapes Filtering

This paper proposes the adaptation of Support Vector Data Description (SVDD) to the multiple kernel case (MK-SVDD), based on SimpleMKL. It also introduces a variant called Slim-MK-SVDD that is able to produce a tighter frontier around the data. For the sake of comparison, the equivalent methods are also developed for One-Class SVM, known to be very similar to SVDD for certain shapes of kernels....

متن کامل

Simplemkl Alain Rakotomamonjy Stéphane Canu

Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning algorithm, based on semi-infinite linear programming, has been recently proposed. This approach has opened new perspectives since it makes MKL tractable for large-scale problems, by...

متن کامل

3D Face Recognition with Multiple Kernel Learning

A novel 3D face recognition framework based on Multiple Kernel Learning (MKL) is proposed in this work. As a first step, preprocessing is applied in order to extract relevant information and remove noise from 3D face scans. Next, a surface normals and Locally Adaptive Regression Kernels (LARK) features are extracted and a kernel function is associated with them. Finally, the corresponding kerne...

متن کامل

Journal of Machine Learning Research X (2008) 1-34 Submitted 01/08; Revised 08/08; Published XX/XX

Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning algorithm, based on semi-infinite linear progamming, has been recently proposed. This approach has opened new perspectives since it makes MKL tractable for large-scale problems, by ...

متن کامل

Multiple Kernel Learning on the Limit Order Book

Simple features constructed from order book data for the EURUSD currency pair were used to construct a set of kernels. These kernels were used both individually and simultaneously through the Multiple Kernel Learning (MKL) methods of SimpleMKL and the more novel LPBoostMKL to train multiclass Support Vector Machines to predict the direction of future price movements. The kernel methods outperfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008